
LA-UR-19-20745
Approved for public release; distribution is unlimited.

Title: Continuous Integration! You Keep Using Those Words. I Do Not Think
They Mean What You Think They Mean.

Author(s): Adams, Terry R.

Intended for: Report

Issued: 2019-09-12 (rev.3)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Continuous Integration!
You keep using those words.

I do not think they mean what you think they mean.

Terry R. Adams
Monte Carlo Methods, Codes, and Applications Group (XCP-3); X-Computational Physics Division

P.O. Box 1663, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA
26 February 2019, version 4.0

LA-UR-19-20745

Abstract

Continuous Integration (CI) is a best practice in the software community. Often though, there are several
ideas as to what it means to practice continuous integration. With this uncertainty of the definition often
comes a loss of benefit. It is good to stop and reflect on how and why CI has been, and still is, practiced
in software community. So, presented here is a historical prospective of CI along with associated practices,
anti-patterns, and benefits. A subsequent presentation will discuss the workflows (including code reviews) and
the controversy that arises as CI has changed with time, especially in regards to feature-branch development.

Keywords: Introduction, Continuous Integration, Software Development, MCATK

Email address: drbubba@lanl.gov (Terry R. Adams)

1

1. Introduction

This is an introduction to an established practice
of modern software development, called continuous
integration (CI). The purpose of this document is to
supplement an oral presentation about CI (Adams,
2019), and to provide a resource to help the scientific
software development (SSD) community, especially
at Los Alamos National Laboratory.

I have observed, in the literature and in conversa-
tions with other developers, that the perceived mean-
ing of CI has evolved and is perhaps now more diffuse
compared to the ‘historical’ definition that I trained
with and learned. Fowler (2006b) uses an expression
for this type of change, which he calls “semantic dif-
fusion”. He points out that as these changes happen
they often “spread through the wider community in
a way that weakens that definition. This weakening
risks losing the definition entirely - and with it any
usefulness to the term.”

A generic refrain often heard, when CI is brought
up in a conversation with other developers, goes as
follows: “We do continuous integration. We use [in-
sert your favorite CI software tool name].” And often
they add, “and it automatically runs builds and tests
when we make a commit (or a pull request).” These
type of conversations leave me perplexed and make
me wonder if they know what they are missing. So, I
decided to create a presentation and this paper to re-
mind scientific developers of the history of integration,
specifically continuous integration. This decision was
recently reinforced by a Kevlin Henney presentation
(Henney, 2018) and comment, “Something else in
software that we are particularly bad at, we have a
weak sense of history”.

Continuous integration is a practice, not a software
tool; CI is an attitude, as much as it is a practice; CI
is as much about what happens before a commit, as
to what happens during and after a commit.

In software development, the integration of compo-
nents has been an essential step in the process almost
since first programming a computer. Every project
has to deal, and often struggle, with the integration
process. With time, several practices have evolved
for dealing with this important software development
step. With a focus on leading to CI, the following list
highlights a select few of the advances in the practice

of software integration:

• (1980s) Microsoft famed practice of “Daily
Builds”. (Cusumano and Selby, 1995).

• (1991) First published use of the term “Contin-
uous Integration”. Integration made possible in
the context of OO1 Design. (Booch, 1991)

• (1998) “Integrate and test several times a day”.
First publication of Extreme Programming (XP).
(Beck, 1998).

• (1999) Embracing Change with XP paper.
Beck’s first publication with the term CI. CI in-
cluded as one of several practices for XP. (Beck,
1999).

• (2000) Extreme Programming book (Seminal).
A CI Description (Beck, 2000).

• (2000) Continuous Integration paper (Classic).
Established a CI outline and practices (Fowler
and Foemmel, 2000, 2006)

• (2007) Continuous Integration book (Definitive).
(Duvall et al., 2007)

• (2010) Continuous Delivery book (Definitive).
Continuous delivery is built upon CI. (Humble
and Farley, 2010)

In the following sections, we will discuss a few
of these advances with the focus being on the prac-
tice of continuous integration. A bit of background
is given in Section 2 about software integration up
to the point that CI arrives on the software develop-
ment scene. Section 3 is about a historical description
of CI with discussions on some practices, benefits,
and antipatterns of CI. Brief discussions about two
somewhat contentious CI practices, daily integration
and trunk-based development are found in Sections
4 and 5, respectively. In Appendix A is the basic CI
description of the Monte Carlo Application ToolKit
(MCATK) (Adams et al., 2015) project. Finally, in
the Bibliography at the end of the document (along
with the work cited in this paper) is gathered the full
bibliography of the author’s research sources on this
topic.

1OO stands for object-oriented.

2

2. Integration

“Integrating a software project means tak-
ing the components of the software as writ-
ten so far, compiling them together and run-
ning the tests (the regression suite).”
– Bertrand Meyer (Meyer, 2014a, p. 103)

This definition is concise and self-explanatory. Yet,
it does not address the “amount of change” and “inter-
val duration” with which the integration happens on a
project. These two points are at the heart of modern
software integration, especially CI.

2.1. Integration Approaches: Phased and Incremen-
tal

McConnell (2004) writes about two software in-
tegration approaches described as phased and incre-
mental. Phased integration follows several defined
phases. Phase one, is to design, code, and test each
component. The second phase, is to take the compo-
nents and combine them into one large system. And
the last phase is to test (and debug) the whole sys-
tem. Since this approach is bringing together (after
an extended period of time) components that have not
been integrated or tested before, then this only com-
pounds the integration process and makes it harder
to locate the problems during integration and testing.
For this reason, a more dramatic name for phased in-
tegration, as mentioned by McConnell (2004), is big
bang integration (Booch, 1994; Meyer, 2014a). The
term integration hell is often the resultant state of a
“big bang” approach to integration (Cunningham and
Contributors, Last Edited 2012)(Duvall et al., 2007,
p. xix). Of course, one does not have to follow these
defined steps to have big bang integration. Just by
having many changes and longer times in between
integrations can often bring about integration hell.

The second integration approach that McConnell
(2004) describes is called incremental integration2

(Booch, 1991, 1994, 1996; Cockburn, 2005). Incre-
mental integration is, just as it says, in increments.
The increments can be small pieces of functionality
in either classes or components that are developed

2The idea of incremental, iterative, and evolutionary software
methods have been around since the 1960s. See Gilb (1981,
1988), Larman (2004, p. 9, 79) and the references within.

and tested alone but then these pieces are gradually
integrated and tested into the full system sooner than
later. This way the system integration and testing is
built up incrementally letting each developer see the
changes to the system from other developers on the
team sooner. Thus, it is helping to spread the “pain”
of integration and testing out over the duration of the
project rather than dealing with it all at the end in a
“big bang” event.

Several benefits listed by McConnell (2004, p.
693) for incremental integration are: errors are
easier to locate, the system succeeds early in the
project, you get improved progress monitoring, you
will improve customer relations, the units of the
system are tested more fully, and you can build
the system on a shorter development schedule.

Incremental integration provides faster feedback

2.2. The “Daily Build”
As listed in the Introduction (Section 1), one of the

more visible advances in integration practices came
in the 1980s and might be considered an incremental
integration approach.3 At that time, Microsoft de-
veloped the practice of the Daily Build (DB) which
is described in interesting detail by Cusumano and
Selby (1995, p. 263).

The DB is the practice of stopping all source com-
mits to the main repository at the end of the work day,
running a build of the integrated source, and executing
basic tests that covers a judicious, yet significant, set
of end-to-end tests to provide quick4 feedback about
the present state of the integrated mainline repository.

Cusumano and Selby (1995, p. 267) states develop-
ers usually integrated their work at least twice a week
though they could do so daily. By spreading the “pain”
of integration over the project duration instead of all
near the end, lead a software engineering manager for
Windows NT to say, ”Doing the daily builds is just
like the most painful thing in the world. But it is the
greatest thing in the world, because you get instant
feedback.” (Cusumano and Selby, 1995, p. 268)

3And, if not thought of as an incremental approach, then at
least can be used in conjunction with incremental approaches.

4An example of run-times for what they call “quick tests” is
taken from the Excel project which took about 30 minutes to
execute.

3

According to McConnell (2004), some of the bene-
fits of DB are: it minimizes integration risk, it reduces
the risk of low quality, it supports easier defect diag-
nosis, and it improves morale. Also, like incremental
integration, it helps spread the “pain” of integration
and testing out over the duration of the project.

There are several things to note about the DB prac-
tice which are: the daily synchronization cadence of
integrated code, a suite of “quick tests” which are
available for use by the developers all during the de-
velopment phase, issues with the build & tests are
expected to be fixed immediately, faster feedback,
and the integration to a centralized mainline code
repository.

Beside the excellent description of DB by
Cusumano and Selby (1995), which I highly rec-
ommend, this topic is also discussed in Steve Mc-
Connell’s two quintessential software engineering
books called Rapid Development and Code Complete
(McConnell, 1996b, 2004). If the reader does not
have easy access to these books then perhaps one can
find the nice condensed version called “Daily Build
and Smoke Test”5 provided by McConnell (1996a).

Many might consider continuous integration to rest
on the shoulders of the daily build process and to be
a next step in the evolution of integration approaches.
Several in the software industry, especially agile prac-
titioners, consider the DB approach as a minimum
needed (Fowler and Foemmel, 2000; Shore and War-
den, 2008).

5The Cusumano DB description includes use of “quick
tests”, and mentions they are often referred to as ”smoke tests”
(Cusumano and Selby, 1995, p.265).

3. Continuous Integration

“Continuous Integration6 is a software de-
velopment practice where members of a
team integrate their work frequently, usu-
ally each person integrates at least daily
– leading to multiple integrations per day.
Each integration is verified by a ‘build’ (in-
cluding tests) to detect integration errors
as quickly as possible.” – Martin Fowler
(Fowler and Foemmel, 2000)

In Booch’s book entitled, Objected-Oriented De-
sign: With Applications, he states, “A far better way
to measure productivity derives from the practice of
continuous integration. In this evolutionary approach,
there is no big-bang integration event;” (Booch, 1991,
p 209). From what the author can discern, this is the
first documented uses of the term continuous integra-
tion and is used in all three of Booch’s books from the
1990s which are in the context of objected-oriented
programming, integration, and design; and describes
an incremental and iterative process (Booch, 1991,
1994, 1996).

In the 1990s, Kent Beck included CI as one of the
12 practices within the Extreme Programming (XP)
software methodology (Beck, 1998, 1999, 2000). He
was very specific with his description for CI, “No
code sits unintegrated for more than a couple of hours.
At the end of every development episode, the code is
integrated with the latest release and all the tests must
run at 100%” (Beck, 2000, p. 97). In other words,
developers integrate very often to the main repository
with NO build or test failures. These seminal publica-
tions on XP, with the inclusion of CI, helped to start
quantifying CI as a software practice.

In a classic web-based article (Fowler and Foem-
mel, 2000), Martin Fowler described how the develop-
ers at ThoughtWorks were setting up and practicing
CI. Fowler sets the tone of the paper by saying, “We
are using the term Continuous Integration, a term
used as one of the practices of XP (Extreme Program-
ming). However we recognize that the practice has

6Since there are intervals, and not a true continuous flow in
CI, some suggest that continual integration might be a better
name than continuous integration (Cunningham and Contribu-
tors, Last Edited 2014; Warden, 2003; Duvall et al., 2007).

4

been around for a long time and is used by plenty of
folks that would never consider XP for their work.”
Though, Beck and Fowler were not the creators of
CI, they were influential in steering the evolution of
software integration from then until the present.

3.1. Continuous Integration Practices

As is seen in the Fowler’s second edition of this
paper (Fowler and Foemmel, 2006), there is a list of
suggested practices within CI that are still the basis
of many CI implementations and are often referred
to by others. In this list the word “Build” means to
build and test. The list of CI practices are:

Continuous Integration Practices

• Maintain a Single Source Repository [Mainline]

• Automate the Build

• Make Your Build Self-Testing

• Everyone Commits to the Mainline Every Day

• Every Commit Should Build the Mainline on an
Integration Machine

• Fix Broken Builds Immediately

• Keep the Build Fast

• Test in a Clone of the Production Environment

• Make It Easy for Anyone to Get the Latest Exe-
cutable

• Everyone Can See What is Happening

• Automate Deployment

Projects do not have to start with all of these prac-
tices at once, but can select a few at a time and build
on that with some of the others practices. If one
looks more closely at several of these practices then
it should be clear that for developers there needs to
be an proactive attitude with as much going on before
the commit as during and after. With CI, as with the
basic trends described in earlier sections, it is good to
keep development in small increments and iterations.
This is reflected and reinforced in the practices of
self-testing Builds, daily commits by everyone, fast
Builds, immediately fixing broken Builds, and every-
one seeing what is happening. Of the listed practices,

only few will be touched on here. For more details
and ideas about CI, see Fowler’s papers (Fowler and
Foemmel, 2000, 2006), the definitive book by Duvall
et al. (2007), and the CI chapter in Humble and Farley
(2010).

When it says to “Keep the Build Fast”, one has to
ask, “How fast is fast?” A number of folks have sug-
gested that a Ten-Minute Build (TMB) is reasonable
for most projects (Beck and Andres, 2004; Fowler
and Foemmel, 2006; Duvall et al., 2007; Shore and
Warden, 2008). The TMB rule means building and
testing in ten minutes. Your mileage may vary. Sim-
ilar to the DB (see Section 2.2) the tests should be
quick tests which now include unit tests.

The practice of “Everyone Commits to the Main-
line Every Day” is the most controversial of the CI
practices. Controversial less for the “daily commit”
frequency (see Section 4) and more for the “commit-
ting to the Mainline” part of the practice. Due to this,
a discussion about Trunk-Based development will be
expanded a bit in Section 5 and more so in a future
presentation that focuses more on the topic.

Given that, we focus in this section on one of the
reasons for “Everyone Commits to the Mainline Every
Day” which is that of communication. Daily, mainline
integration allows developers to communicate their
changes to each other in a timely and visible manner.
Hence, the point of the word integration in the term
continuous integration.

It is often stated, one of the goals of CI is frequent
deployment and every successful Build should be a
candidate for release (Fowler and Foemmel, 2006;
Shore and Warden, 2008; Duvall et al., 2007). Thus,
the last CI practice listed is “automate deployment.”
Also, this is why many consider CI as the backbone
of continuous delivery (CD). CD takes the next step
and is the practice of setting up a “pipeline” in the
development process that takes the product from de-
veloping code, to integrating the code, to preparing
it for release, and releasing it frequently. Again, fre-
quent means with every repository commit. All of
this, hopefully, transparent to the users. For more
details about CD, see the definitive book by Humble
and Farley (2010).

I will add one more practice, which is implicit in
this list, that is “Run a Private Build”. Once your
development “sandbox” is building and executing the

5

tests successfully then merge into your development
“sandbox” any changes from the mainline repository.
Then execute a clean, new Build. With no failures,
you are ready to merge your changes to the mainline
repository.

As stated in the Introduction (Section 1), CI is a
practice and not a tool; Its an attitude7 as much as
a practice. This means that to adopt its use requires
an explicit commitment from the development team
before moving forward.

I list here some of the the benefits of CI, but not
all:

Continuous Integration Benefits

• Reduces risks to integration and the overall
project

• Increases visibility and communication of code
changes between developers

• Establishes greater confidence in the software
product for developers, managers, and users

• Increases product visibility for decisions and
trends

• Generates deployable software at any time, any
place, and frequently

• Reduces repetitive manual processes

• Helps the human factor with natural breaks, in-
creased confidence, and morale

We will leave this list as it is and refer the reader
to three references (Beck, 2000; Fowler and Foem-
mel, 2006; Duvall et al., 2007) for more details and
benefits.

Note that CI improves on the two points called out
in the Integration section (Section 2) on the “amount
of change” and “interval duration”. Also, with the
Incremental and DB integration legacy, CI is built for
(and improves on) fast feedback and reducing risks to
the project.

Integrate Often
Keep Batch Size Small

Be Prepared to Deploy

7See Shore (2005a) web post about attitude.

3.2. Continuous Integration Anti-Patterns
An anti-pattern (AP) is an intentional or unin-

tentional practice (or habit) that negates (or works
against) one or more practices in a process. Duvall
(2007, 2008) has written about anti-patterns of CI8

which are gathered here:

CI Anti-Pattern Names

1. Infrequent Check-Ins

2. Broken Builds

3. Minimal Feedback

4. Receiving Spam Feedback

5. Slow Builds

6. Bloated Build

7. Bottleneck Commits

8. Continuous Ignorance

9. Scheduled Builds

10. Works On My Machine

11. IDE-Only Build

12. Myopic Environment

13. Polluted Environment

The first six are mostly self-explanatory and are
the primary APs that the other ones are related to or
built upon. Lets examine several of the secondary
APs that are less obvious. The “Bottleneck Commits”
are caused by developers committing code changes
at the end of the day just before going home. This
AP is a variation on the “Infrequent Check-Ins” anti-
pattern. Another AP variation is called “Five-O’Clock
Checkin” which should speaks for itself.

“Continuous Ignorance” is when successful Builds,
one after the other, are masking the fact that defects
are making their way into the integrated system. This
is often due to the Build being made up of simple
compilation and a few unit tests. The team is lulled
into a false sense of security. By adding additional
processes like more focused integrated tests, auto-
mated code inspections, and so on, you are better able

8Also see Shore (2008) for forces working against CI.

6

to determine if the software is actually working ear-
lier in the development cycle. But remember that the
more you add, the slower the feedback becomes.

“Scheduled Builds” is basically Builds that run
daily, weekly, or on some other schedule, but NOT
with every commit. Remember, if Builds are run on
a less frequent basis than with every commit then
you are delaying the discovery of issues earlier in the
development cycle.

“Polluted Environment” is where a partial Build is
ran to save time. This can lead to false positives or
false negatives. It is better to clean previously built
artifacts prior to running a Build. Some like to run
a a scorched earth policy (Duvall, 2008) where you
start everything from scratch so to speak.

4. Continuous Integration: Daily Integration!?

We have shown in this report that CI has been in-
fluenced by Agile with its ‘commit, build, and test
on a daily basis, if not several times a day’ practice.
Some software projects are not as comfortable with
this approach and might wonder what would be a
good cadence for any given project.

One of the main goals in CI is to always be prepared
to deploy the software at a moments notice. With a
comment that supports this goal, the Poppendieck’s
wrote:

“It is not always practical to integrate all
of the code all the time. How often you
integrate and test depends on what it takes
to find defects... The proof that you are
integrating frequently enough lies in your
ability to integrate rapidly at any time, with-
out finding defects.” – Mary and Tom Pop-
pendieck (Poppendieck and Poppendieck,
2010, p.78)

So, the reader might want to ask themselves,“What
integration cadence9 is needed for my project to sup-
port this statement?” or “How often do we find defects
when we integrate, and would shortening the integra-
tion cadence help?”

9See Poppendieck and Poppendieck (2010, p.78) for thoughts
on cadence.

Though the Poppendieck’s give practical advice
for an integration cadence, the next section highlights
research that indicates a daily cadence should still be
strongly considered.

7

5. Continuous Integration: Trunk-Based Devel-
opment

One aspect of continuous integration that seems to
be the most controversial in the software community
is trunk-based development (TBD)10. An illustration
of the controversy11 can be seen in a recent blog post
by Farley12 and the unusually large number of re-
sponses in the comments (Farley, 2018c).

When starting the research on this report, I was
unaware of this controversy in CI; though I did
perceive13 an underlying tension between TBD and
feature-branch development (FBD)14, which was one
of the reasons I started this research on CI. Also,
coworkers were saying they were doing CI even
though they were using long lived branches and the
GitHub-like pull-request approach which seemingly
slows down the frequency of integration. It all seemed
contradictory to someone, like me, who had been do-
ing CI in a TBD approach. I was concerned that no
one else felt this tension between these two, almost
seemingly, orthogonal approaches.

Turns out, I was not alone and there happened to be
a good bit of discussion on this topic in the software
community. A particularly useful presentation by
Sam Newman, at the GOTO Conference, called “Fea-
ture Branches and Toggles in a Post-GitHub World”
(Newman, 2017) and explains a good bit of integra-
tion history and the controversy on this topic. Though
Newman is biased toward TBD, he gives a fairly bal-
anced presentation on the topic. He explains CI and
TBD and continues on to illustrate the rise and use of
GitHub and pull-based requests.

Focus here will remain on TBD and save the
broader discussion for TBD versus FBD for a later

10Trunk-based development means to integrate directly into
the mainline repository.

11Also see https://www.reddit.com/r/programming/

comments/7eko0m/trunk_based_development/
12Farley had been unofficially doing CI many years before

XP and the rise of CI. He is a proponent of TBD plus speaks and
writes on it often. He is also the co-author of the Continuous
Delivery book.

13In part, to the MCATK project recently starting to use Git-
flow.

14FBD uses a “GitHub Flow”-like workflow for development.
This relies on developing on branches and merging back to the
trunk, or mainline, repository periodically

date. So following up on TBD, there has been a se-
ries of studies that included the very topics of CI
and TBD. Researchers at DevOps Research & As-
sessment (DORA) have been releasing annual reports
since 2014 (Forsgren et al., 2014, 2015, 2016, 2017,
2018a) and have published a supporting book that
gives explanations, reasonings, and details that the
reports do not (Forsgren et al., 2018b). The results are
based on surveys from the software community. And
though the study was started for DevOps15 it covers a
broad cross section of the software community.

Their research “uncovered 24 key capabilities that
drive improvements in software delivery performance”
(Forsgren et al., 2018b, p. xix). Of those capabilities,
two are the most relevant to this report. They are CI
and TBD. Note that DORA’s CI definition (Forsgren
et al., 2018b, p. 44) is consistent with this reports
description of CI (see Section 3). Their results
related to CI and TBD show the following practices
contribute to higher software delivery performance
(Forsgren et al., 2016, p.30-31):

• Merging Code into Trunk on a Daily Basis

• Having Branches that are Short Lived
(Less than a Day)

• Having Fewer than Three Active Branches

Although DORA’s findings in the 2016 report
showed “abundant evidence” (Forsgren et al., 2017,
p.40) that TBD practices contributes to higher per-
forming teams, there are developers who were 16

and remain skeptical, especially those familiar with
a GitHub workflow (Forsgren et al., 2018b, p. 55).
So DORA followed up in a 2017 study specifically
looking at development workflow practices to see if
there was differences between high, medium, and
low performers. DORA reported in 2017 that the
high performers used the shortest integration times
and branch lifetimes. The low performers used the

15See Garnichaud (2012) for a description of DevOps
16See the DORA case study of Capital One for one of its

senior director’s, who was also leading the Continuous Deliv-
ery and DevOps transformation, comments of early skepticism
and later significant improvements due in part to TBD (DORA,
2017).

8

https://www.reddit.com/r/programming/comments/7eko0m/trunk_based_development/
https://www.reddit.com/r/programming/comments/7eko0m/trunk_based_development/

longest integration times and branch lifetimes. And
“these differences are statistically significant” (Fors-
gren et al., 2017, p. 41).

One proponent of TBD has written on the subject
often and even has a very detailed website called
TruckBasedDevelopment.com. The site goes into
detail about integration and development, and I highly
recommend it for more details about the pros & cons
about this subject (Hammant and Smith, 2018).

It is important to say that there is nothing innately
evil about FBD. Teams who are having success with
it might consider TBD as an opportunity to improve
based on the DORA results. Many feel there is noth-
ing that makes FBD and CI incompatible as long you
merge to the trunk daily, keep branches short lived
(less than a day), and have fewer than three active
branches. This would be consistent with what has
been presented in this report for CI.

This section is brief since I plan to expand on this
topic in a subsequent presentation. The brevity (most
likely) created more questions than answers, so the
bibliography includes a number of references on the
topics of TBD and FBD, please refer to them for more
on this topic. Also, the future report will explore
modern code review which is conspicuously absent
in this presentation.

6. Continuous Integration Users

A quick scan of the internet finds the following
places use continuous integration as part of their soft-
ware development. There are several references in the
attached bibliography.

• IBM

• Microsoft

• Google

• Facebook

• Amazon

• Etsy

• Target

• Walmart

• Nordstrom

• Fidelity

• CapitalOne

• Intel

• Kitware

• Flickr

• LinkedIn

• Netflix

• Tesla

• Adobe

• Airbnb

It is important to point out that CI and TBD are the
norm at several, if not more, of these organizations
such as Google (Potvin and Levenberg, 2016) and
Facebook (Feitelson et al., 2013; Rossi et al., 2016)
to name a few. And note that code review is required
and an important part of the workflow at many of
these places (e.g., Google).

7. Summary

I have told you the truth,
and it’s up to you to live with it.
– inspired by Yeste of The Princess Bride

Continuous Integration is considered a best practice
in software development. Interestingly enough, out of
all the XP practices, Bertrand Meyer17 considers Test-
First and CI as the most lasting technical contributions
to the software development industry and community
(Meyer, 2014a, p.138). Meyer, also, includes CI under
the Brilliant category of his Ugly, Hyped, and Good
categories of Agile (Meyer, 2014a, p.154).

Continuous Integration is summarized in this re-
port as integrate often, keep batch size small, and be
prepared to deploy.

With all this discussion about the integration pro-
cess, a Challenge is made to the reader: Analyze
your process, find ways to improve it, and in doing
so strongly consider adding Continuous Integration
ideas and practices.

8. Acknowledgements

A special thanks to the other, initial MCATK, mem-
bers (Tim Goorley, Jeremy Sweezy, Steve Nolen, and
Tony Zukaitis) who willingly supported, and commit-
ted to, the practices of CI from the beginning of the
project. Thanks to David Moulton, the T-5 DGL and
Lead/POC of IDEAS, for funding support of these pre-
sentations. A thank you to Martin Fowler for kindly
pointing me to the annual DORA “State of DevOps”
reports and the more detailed accompanying book,
Accelerate. And a nod to the late William Goldman
for inspiration from his The Princess Bride novel.

17Meyer is a software engineer who invented Design by
Contract and was one of the earliest proponents of object-
oriented programming. See https://en.wikipedia.org/

wiki/Bertrand_Meyer.

9

https://en.wikipedia.org/wiki/Bertrand_Meyer
https://en.wikipedia.org/wiki/Bertrand_Meyer

Figure A.1: CI Practices on a large Post-it note,
dated 2008, which can be found in the MCATK
Bullpen

Appendix A. MCATK Continuous Integration

The Monte Carlo Application ToolKit (MCATK)
(Adams et al., 2015; Trahan et al., 2018) team prac-
ticed CI from the inception of the project in 2008.
The team made a commitment and started with, and
added most of, the basic CI Practices (see Section
3) which is posted on the MCATK bullpen wall, see
Fig. A.1. The listed practices were used regularly as
part of our CI process.

In the spirit of the simple CI process described by
Shore (2006) in ”Continuous Integration on a Dollar a
Day”, the following is the initial CI process MCATK
started with and used until 2017. This process out-
line was taken from documentation in the MCATK
TeamForge account dated July 2008.18

Please keep in mind as your read the following
process outline, that it does not reflect that the team
also practiced Self-Testing Builds, Run A Private
Build, Ten-Minute Builds19, working in small chunk

18This process outline was posted on a large Post-it in the
MCATK bullpen until sometime in 2017.

19A Ten-Minute Build means to build and execute the tests in
ten minutes.

& duration Commits Every Day (if not several times
a day) and upon commit a clean, new checkout and
Build was done on a Clone Production Environment.

MCATK Process For Continuous Integration

1. Build & Test Local “Sandbox”

(a) make clean

(b) make all/runtests (multi-compilers)

(c) 100% NO errors (or warnings)

2. Update Local “Sandbox” With Head

(a) svn update

(b) Repeat Step 1).

3. Communicate Intention Of integration

(a) Verbally and/or with a CI Token (Chuckle-
head the Sockmonkey)

(b) Brief code “freeze”

4. Commit Your Code

• svn ci -m “Really well tested and commu-
nicative code”

5. Go To CI Machine & Build, from SCRATCH,
the Head

(a) svn co repository head

(b) make all/runtests

(c) If build fails

• Evaluate Problem:
i. If a quick-fix then FIX-IT in your

own local sandbox
ii. Start Over at 1),

iii. Else if NOT a quick-fix then
UNDO Commit to SVN

iv. Communicate your DONE
v. Start Over at Step 1)

(d) 100% NO Errors or Warnings!

6. COMMUNICATE YOUR DONE BY PUTTING
Sockmonkey Back in His Place!!

The process is short and simple. If a Build failure
occurs during these steps it was fixed. If the failure

10

happens while doing Step 5, then the failure was eval-
uated and you would decide if you can fix it “quickly”
(usually time-blocked) and if not then back off your
commit from the mainline source repository. Note
that this particular process implies that integration is
being done in a synchronous way and not an asyn-
chronous way. In other words, a mini-code freeze until
the developer with the commit token (Chuckhead the
Sockmonkey) has rung the bell and returned the to-
ken to it place. Being a small team in a bullpen for
co-location, and using “The One Button” and “Ten-
Minute Builds” CI practices help make this process
doable.

Bibliography

Adams, B., McIntosh, S., 2016. “Modern Release Engineering
in a Nutshell – Why Researchers Should Care”. In: 2016
IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). Vol. 5. pp. 78–90.

Adams, T., Nolen, S., Sweezy, J., Zukaitis, A., Campbell, J.,
Goorley, T., Greene, S., Aulwes, R., 2015. “Monte Carlo
Application ToolKit (MCATK)”. Annals of Nuclear Energy
82 (0), 41–47.

Adams, T. R., 2019. “Continuous Integration!”. Tech. Rep.
LA-UR-19-21074, Los Alamos National Labortary, Los
Alamos, NM, USA, Presentation Slides.
URL https://permalink.lanl.gov/object/tr?

what=info:lanl-repo/lareport/LA-UR-19-21074

Amazon, 2019. “What is Continuous Integration?”.
https://aws.amazon.com/devops/continuous-

integration, retrieved 11 January 2019.
Bahrs, P., No date: 2018. “Getting Started with Continuous

Integration”. https://www.ibm.com/cloud/garage/

content/code/practice_continuous_integration,
retrieved 2 November 2018.

Basu, S., 2017. “Continuous Integration: Its History and
Benefits”. https://dzone.com/articles/continuous-
integration-and-its-whereabouts, retrieved 8 August
2018.

Beck, K., 1998. “Extreme Programming: A Humanistic Dis-
cipline of Software Development”. In: Astesiano, E. (Ed.),
Proceedings of International Conference on Fundamental Ap-
proaches to Software Engineering. Vol. 1382 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, Berlin,
Germany, pp. 1–6.

Beck, K., 1999. “Embracing Change with Extreme Program-
ming”. Computer 32 (10), 70–77.
URL https://ieeexplore.ieee.org/abstract/

document/796139

Beck, K., 2000. Extreme Programming Explained: Embrace
Change. Addison-Wesley, Boston, MA, US.

Beck, K., Andres, C., 2004. Extreme Programming Explained:

Embrace Change, 2nd Edition. Addison-Wesley, Boston, MA,
US.

Bernardo, J. a. H., da Costa, D. A., Kulesza, U., 2018. “Study-
ing the Impact of Adopting Continuous Integration on the
Delivery Time of Pull Requests”. In: Proceedings of the 15th
International Conference on Mining Software Repositories.
MSR ’18. ACM, New York, NY, USA, pp. 131–141.

Bobrovskis, S., Jurenoks, A., 2018. “A Survey of Continuous In-
tegration, Continuous Delivery and Continuous Deployment”.
In: Zdravkovic, J., Grabis, J., Nurcan, S., Stirna, J. (Eds.),
Joint Proceedings of the BIR 2018 Short Papers, Workshops
and Doctoral Consortium colocated with 17th International
Conference Perspectives in Business Infomatics Research
(BIR 2018) Stockholm, Sweden, September 24-26, 2018. Vol.
2218. pp. 314–322.
URL http://ceur-ws.org/Vol-2218/paper31.pdf

Bogard, J., 2017. “Trunk-Based Development or Pull Requests
- Why Not Both?”. https://jimmybogard.com/trunk-
based-development-or-pull-requests-why-not-

both/, retrieved 31 December 2018.
Booch, G., 1991. Object-Oriented Design: With Applications.

The Benjamin/Cummings Publishing Company, Inc., Red-
wood, CA, US.

Booch, G., 1994. Object-Oriented Design and Analysis with
Applications (2nd Edition). The Benjamin/Cummings Pub-
lishing Company, Inc., Redwood, CA, US.

Booch, G., 1996. Object Solutions: Managing the Object-
Oriented Project. Pearson Education, Menlo Park, CA, US.

Bowyer, J., Hughes, J., 2006. “Assessing Undergraduate Expe-
rience of Continuous Integration and Test-Driven Develop-
ment”. In: Proceedings of the 28th International Conference
on Software Engineering. ACM, pp. 691–694.

Brady, D., 2017. “Continuous Integration, not Continu-
ous Isolation”. https://damianbrady.com.au/2017/

07/12/continuous-integration-not-continuous-

isolation/, retrieved 8 October 2018.
Brandtner, M., Giger, E., Gall, H., Feb 2014. “Supporting Con-

tinuous Integration by Mashing-up Software Quality Informa-
tion”. In: 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engi-
neering (CSMR-WCRE). pp. 184–193.

Brito, G., Terra, R., Valente, M. T., 2018. “Monorepos: A Multi-
vocal Literature Review”. arXiv preprint arXiv:1810.09477.
URL https://arxiv.org/pdf/1810.09477.pdf

Bugayenko, V., 2014a. “Continuous Integration Doesn’t Work”.
https://devops.com/continuous-integration-

doesnt-work, retrieved 30 November 2017.
Bugayenko, V., 2014b. “Continuous Integration Is Dead”.

http://www.yegor256.com/2014/10/08/continuous-

integration-is-dead.html, retrieved 11 December
2017.

Campbell, R., 2012. “Software Development Prac-
tices: A Conversation with Steve McConnell”.
https://www.itprotoday.com/microsoft-visual-

studio/software-development-practices-

conversation-steve-mcconnell, retrieved 1 September

11

https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-19-21074
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-19-21074
https://aws.amazon.com/devops/continuous-integration
https://aws.amazon.com/devops/continuous-integration
https://www.ibm.com/cloud/garage/content/code/practice_continuous_integration
https://www.ibm.com/cloud/garage/content/code/practice_continuous_integration
https://dzone.com/articles/continuous-integration-and-its-whereabouts
https://dzone.com/articles/continuous-integration-and-its-whereabouts
https://ieeexplore.ieee.org/abstract/document/796139
https://ieeexplore.ieee.org/abstract/document/796139
http://ceur-ws.org/Vol-2218/paper31.pdf
https://jimmybogard.com/trunk-based-development-or-pull-requests-why-not-both/
https://jimmybogard.com/trunk-based-development-or-pull-requests-why-not-both/
https://jimmybogard.com/trunk-based-development-or-pull-requests-why-not-both/
https://damianbrady.com.au/2017/07/12/continuous-integration-not-continuous-isolation/
https://damianbrady.com.au/2017/07/12/continuous-integration-not-continuous-isolation/
https://damianbrady.com.au/2017/07/12/continuous-integration-not-continuous-isolation/
https://arxiv.org/pdf/1810.09477.pdf
https://devops.com/continuous-integration-doesnt-work
https://devops.com/continuous-integration-doesnt-work
http://www.yegor256.com/2014/10/08/continuous-integration-is-dead.html
http://www.yegor256.com/2014/10/08/continuous-integration-is-dead.html
https://www.itprotoday.com/microsoft-visual-studio/software-development-practices-conversation-steve-mcconnell
https://www.itprotoday.com/microsoft-visual-studio/software-development-practices-conversation-steve-mcconnell
https://www.itprotoday.com/microsoft-visual-studio/software-development-practices-conversation-steve-mcconnell

2018.
Cockburn, A., 2005. Crystal Clear: A Human-Powered Method-

ology for Small Teams. Addison-Wesley, Boston, MA, US.
Coelho, J., Valente, M. T., 2017. “Why Modern Open Source

Projects Fail”. In: Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering. ESEC/FSE
2017. ACM, New York, NY, USA, pp. 186–196.
URL http://doi.acm.org/10.1145/3106237.

3106246

Cunningham, W., Contributors, Last Edited 2012. “Wiki-
WikiWeb: Integration Hell”. http://wiki.c2.com/

?IntegrationHell, retrieved, 01 January 2018;.
Cunningham, W., Contributors, Last Edited 2014. “Wiki-

WikiWeb: Continuous Integration”. http://wiki.c2.com/
?ContinuousIntegration, retrieved, 01 January 2018.

Cusumano, M. A., Selby, R. W., 1995. Microsoft Secrets. The
Free Press, New York, NY, US.

Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J., 2012. “Social
Coding in GitHub: Transparency and Collaboration in an
Open Software Repository”. In: Proceedings of the ACM
2012 Conference on Computer Supported Cooperative Work.
CSCW ’12. ACM, New York, NY, USA, pp. 1277–1286.
URL http://doi.acm.org/10.1145/2145204.

2145396

Debbiche, A., Dienér, M., 2014. Assessing Challenges of Con-
tinuous Integration in the Context of Software Requirements
Breakdown: A Case Study. Master’s thesis, Chalmers Uni-
versity of Technology and University of Gothenburg, Gothen-
burg, Sweden.

Debbiche, A., Dienér, M., Berntsson Svensson, R., 2014. “Chal-
lenges When Adopting Continuous Integration: A Case
Study”. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M.,
Männistö, T., Münch, J., Raatikainen, M. (Eds.), Product-
Focused Software Process Improvement. Springer Interna-
tional Publishing, Cham, pp. 17–32.

Deshpande, A., Riehle, D., 2008. “Continuous Integration in
Open Source Software Development”. In: Russo, B., Dami-
ani, E., Hissam, S., Lundell, B., Succi, G. (Eds.), Open
Source Development, Communities and Quality. Springer
US, Boston, MA, pp. 273–280.

DORA, 2017. “Capital One Drives Continuous Delivery
Improvement with Insights from DORA: A Case Study”.
https://devops-research.com/assets/capital_

one_case_study.pdf, retrieved, 2018.
Driessen, V., 2010. “A Successful Git Branching Model”.

https://nvie.com/posts/a-successful-git-

branching-model/, retrieved, 6 November 2018.
Duvall, P., 2006. “Automation for the People: Continuous Feed-

back: Receive Immediate Feedback with Every Source Code
Change”. https://www.ibm.com/developerworks/

library/j-ap11146/j-ap11146-pdf.pdf, retrieved, 08
August 2018.

Duvall, P., 2007. “Automation for the People: Continuous In-
tegration Anti-Patterns: Make Your Life with CI Easier
by Learning What Not To Do”. https://www.ibm.com/
developerworks/library/j-ap11297/index.html, re-

trieved, 1 December 2017.
Duvall, P., 2008. “Automation for the People: Continu-

ous Integration Anti-Patterns, Part 2: Make Your Life
with CI Easier by Learning What Not To Do”. https:

//www.ibm.com/developerworks/java/library/j-

ap03048/j-ap03048-pdf.pdf, retrieved, 1 December
2017.

Duvall, P. M., Glover, A., Matyas, S., 2007. Continuous In-
tegration: Improving Software Quality and Reducing Risk.
Addison-Wesley, Upper Saddle River, NJ, US.

Ecker, R., 2016a. “Code Reviews Trunk Based De-
velopment”. https://team-coder.com/code-reviews-
in-trunk-based-development/, retrieved, 01 October
2018.

Ecker, R., 2016b. “From Git Flow to Trunk Based Develop-
ment”. https://team-coder.com/from-git-flow-to-
trunk-based-development/, retrieved, 01 October 2018.

Farley, D., 2011. “Don’t Feature Branch”. http://www.

davefarley.net/?p=160, retrieved, 15 October 2018.
Farley, D., April 2018a. “A Few Thoughts on Feature Flags”.

http://www.davefarley.net/?p=255, retrieved, 15 Oc-
tober 2018.

Farley, D., September 2018b. “CI and the Change Log”. http:
//www.davefarley.net/?p=263, retrieved, 15 October
2018.

Farley, D., March 2018c. “Continuous Integration and Fea-
ture Branching”. http://www.davefarley.net/?p=247,
retrieved, 15 October 2018.

Feitelson, D. G., Frachtenberg, E., Beck, K. L., July 2013.
“Development and Deployment at Facebook”. IEEE Internet
Computing 17 (4), 8–17.

Fernandez, S., 2018. “Back to the Roots: To-
wards True Continuous Integration (Part I)”.
https://dzone.com/articles/back-to-the-roots-

towards-true-continuous-integrat, retrieved, 08
August 2018.

Fitzgerald, B., Stol, K.-J., 2017. “Continuous Software
Engineering: A Roadmap and Agenda”. Journal of Systems
and Software 123, 176–189.
URL http://www.sciencedirect.com/science/

article/pii/S0164121215001430

Forsgren, N., Brown, A., Humble, J., Kersten, N., Kim, G.,
2016. “2016 State of DevOps Report”. Tech. rep., Puppet
and DevOps Research and Assessment.
URL http://nicolefv.com/s/2016-State-of-

DevOps-Report.pdf

Forsgren, N., Humble, J., Kim, G., 2018a. “Accelerate: State of
DevOps 2018: Strategies for a New Economy Report”. Tech.
rep., DevOps Research and Assessment.
URL https://cloudplatformonline.com/2018-

state-of-devops.html

Forsgren, N., Humble, J., Kim, G., 2018b. Accelerate: The
Science of Lean Software and DevOps Building and Scaling
High Performing Technology Organizations, 1st Edition. IT
Revolution Press.

Forsgren, N., Kim, G., Kersten, N., Humble, J., 2014. “2014

12

http://doi.acm.org/10.1145/3106237.3106246
http://doi.acm.org/10.1145/3106237.3106246
http://wiki.c2.com/?IntegrationHell
http://wiki.c2.com/?IntegrationHell
http://wiki.c2.com/?ContinuousIntegration
http://wiki.c2.com/?ContinuousIntegration
http://doi.acm.org/10.1145/2145204.2145396
http://doi.acm.org/10.1145/2145204.2145396
https://devops-research.com/assets/capital_one_case_study.pdf
https://devops-research.com/assets/capital_one_case_study.pdf
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://www.ibm.com/developerworks/library/j-ap11146/j-ap11146-pdf.pdf
https://www.ibm.com/developerworks/library/j-ap11146/j-ap11146-pdf.pdf
https://www.ibm.com/developerworks/library/j-ap11297/index.html
https://www.ibm.com/developerworks/library/j-ap11297/index.html
https://www.ibm.com/developerworks/java/library/j-ap03048/j-ap03048-pdf.pdf
https://www.ibm.com/developerworks/java/library/j-ap03048/j-ap03048-pdf.pdf
https://www.ibm.com/developerworks/java/library/j-ap03048/j-ap03048-pdf.pdf
https://team-coder.com/code-reviews-in-trunk-based-development/
https://team-coder.com/code-reviews-in-trunk-based-development/
https://team-coder.com/from-git-flow-to-trunk-based-development/
https://team-coder.com/from-git-flow-to-trunk-based-development/
http://www.davefarley.net/?p=160
http://www.davefarley.net/?p=160
http://www.davefarley.net/?p=255
http://www.davefarley.net/?p=263
http://www.davefarley.net/?p=263
http://www.davefarley.net/?p=247
https://dzone.com/articles/back-to-the-roots-towards-true-continuous-integrat
https://dzone.com/articles/back-to-the-roots-towards-true-continuous-integrat
http://www.sciencedirect.com/science/article/pii/S0164121215001430
http://www.sciencedirect.com/science/article/pii/S0164121215001430
http://nicolefv.com/s/2016-State-of-DevOps-Report.pdf
http://nicolefv.com/s/2016-State-of-DevOps-Report.pdf
https://cloudplatformonline.com/2018-state-of-devops.html
https://cloudplatformonline.com/2018-state-of-devops.html

State of DevOps Report”. Tech. rep., Puppet, IT Revolution
Press, and ThoughtWorks.
URL http://nicolefv.com/s/2014-state-of-

devops-report-aezm.pdf

Forsgren, N., Kim, G., Kersten, N., Humble, J., 2015. “2015
State of DevOps Report”. Tech. rep., Puppet and IT Revolu-
tion Press.
URL http://nicolefv.com/s/2015-DevOps-Report-

final-with.pdf

Forsgren, N., Kim, G., Kersten, N., Humble, J., Brown, A., 2017.
“2017 State of DevOps Report”. Tech. rep., DevOps Research
and Assessment.
URL http://nicolefv.com/s/2017SODOR-FINAL.pdf

Fowler, M., 2006a. “BranchByAbstraction”. https:

//martinfowler.com/bliki/BranchByAbstraction.

html, retrieved, 21 October 2018.
Fowler, M., 2006b. “SemanticDiffusion”. https://

martinfowler.com/bliki/SemanticDiffusion.html,
retrieved, 27 August 2018.

Fowler, M., 2009. “FeatureBranch”. https://martinfowler.
com/bliki/FeatureBranch.html, retrieved, 06 October
2018.

Fowler, M., 2010. “FeatureToggle”. https://martinfowler.
com/bliki/FeatureToggle.html, retrieved, 21 October
2018.

Fowler, M., 2011. “FrequencyReducesDiffi-
culty”. https://martinfowler.com/bliki/

FrequencyReducesDifficulty.html, retrieved, 22
November 2018.

Fowler, M., 2017. “ContinuousIntegrationCertifi-
cation”. https://martinfowler.com/bliki/

ContinuousIntegrationCertification.html, re-
trieved, 08 October 2018.

Fowler, M., 2018. “My Foreword to Accelerate”.
https://martinfowler.com/articles/accelerate-

foreword.html, retrieved, 08 October 2018.
Fowler, M., Foemmel, M., 2000. “Continuous Integration

(Original Version)”. https://www.martinfowler.com/

articles/originalContinuousIntegration.html, re-
trieved, 01 January 2018.

Fowler, M., Foemmel, M., 2006. “Continuous Inte-
gration”. https://www.martinfowler.com/articles/

continuousIntegration.html, retrieved, 01 January
2018.

Fuggetta, A., Di Nitto, E., 2014. “Software Process”. In:
Proceedings of the on Future of Software Engineering. FOSE
2014. ACM, New York, NY, USA, pp. 1–12.
URL http://doi.acm.org/10.1145/2593882.

2593883

Gadzinowski, K., 2018. “Trunk-Based Development vs. Git
Flow”. https://www.toptal.com/software/trunk-

based-development-git-flow, retrieved, 06 October
2018.

Garnichaud, N., 2012. “What Exactly is DevOps?”. Dr. Dobb’s:
The World of Software Development.
URL http://www.drdobbs.com/architecture-and-

design/what-exactly-is-devops/240009147#

Gary, K., Enquobahrie, A., Ibanez, L., Cheng, P., Yaniv, Z.,
Cleary, K., Kokoori, S., Muffih, B., Heidenreich, J., 2011.
“Agile Methods for Open Source Safety-critical Software”.
Software: Practice and Experience 41 (9), 945–962.

Gaston, D. R., Peterson, J. W., Permann, C. J., Andrs, D., Slaugh-
ter, A. E., Miller, J. M., 2015. “Continuous Integration for
Concurrent Computational Framework and Application De-
velopment”. Journal Open Research Software 2 (1), p.e10.
URL http://doi.org/10.5334/jors.as

Gilb, T., 1981. “Evolutionary Development”. SIGSOFT
Software Engineering Notes 6 (2), 17.
URL http://doi.acm.org/10.1145/1010865.

1010868

Gilb, T., 1988. Principles of Software Engineering Management.
Pearson Education Limited, Harlow Essex, Great Britian.

GitHub, 2017. “Understanding the GitHub Flow”. https:

//guides.github.com/introduction/flow/, retrieved,
06 October 2018.

Glover, A., 2007. “Spot Defects Early With Continuous
Integration”. https://www.ibm.com/developerworks/

java/tutorials/j-cq11207/j-cq11207-pdf.pdf, re-
trieved, 22 December 2017.

Gousios, G., Pinzger, M., Deursen, A. v., 2014. “An Exploratory
Study of the Pull-based Software Development Model”.
In: Proceedings of the 36th International Conference on
Software Engineering. ICSE 2014. ACM, New York, NY,
USA, pp. 345–355.
URL http://doi.acm.org/10.1145/2568225.

2568260

Gousios, G., Storey, M., Bacchelli, A., May 2016. “Work Prac-
tices and Challenges in Pull-Based Development: The Con-
tributor’s Perspective”. In: 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE). pp. 285–
296.

Gousios, G., Zaidman, A., Storey, M.-A., van Deursen, A., 2015.
“Work Practices and Challenges in Pull-based Development:
The Integrator’s Perspective”. In: Proceedings of the 37th
International Conference on Software Engineering - Volume
1. ICSE ’15. IEEE Press, Piscataway, NJ, USA, pp. 358–368.
URL http://dl.acm.org/citation.cfm?id=2818754.

2818800

Grebenyuk, A., 2018. “Trunk-Based Development”. http:

//kean.github.io/post/trunk-based-development,
retrieved, 06 October 2018.

Hamdan, S., Alramouni, S., 2015. “A Quality Framework for
Software Continuous Integration”. Procedia Manufacturing 3,
2019–2025, 6th International Conference on Applied Human
Factors and Ergonomics (AHFE 2015) and the Affiliated
Conferences, AHFE 2015.

Hammant, P., 2013. “What is Truck-Based Development?”.
https://paulhammant.com/2013/04/05/what-is-

trunk-based-development/, retrieved, 06 October 2018.
Hammant, P., Smith, S., 2018. Trunk Based Development -

Webpage. https://trunkbaseddevelopment.com/, re-
trieved, 06 October 2018.

13

http://nicolefv.com/s/2014-state-of-devops-report-aezm.pdf
http://nicolefv.com/s/2014-state-of-devops-report-aezm.pdf
http://nicolefv.com/s/2015-DevOps-Report-final-with.pdf
http://nicolefv.com/s/2015-DevOps-Report-final-with.pdf
http://nicolefv.com/s/2017SODOR-FINAL.pdf
https://martinfowler.com/bliki/BranchByAbstraction.html
https://martinfowler.com/bliki/BranchByAbstraction.html
https://martinfowler.com/bliki/BranchByAbstraction.html
https://martinfowler.com/bliki/SemanticDiffusion.html
https://martinfowler.com/bliki/SemanticDiffusion.html
https://martinfowler.com/bliki/FeatureBranch.html
https://martinfowler.com/bliki/FeatureBranch.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FrequencyReducesDifficulty.html
https://martinfowler.com/bliki/FrequencyReducesDifficulty.html
https://martinfowler.com/bliki/ContinuousIntegrationCertification.html
https://martinfowler.com/bliki/ContinuousIntegrationCertification.html
https://martinfowler.com/articles/accelerate-foreword.html
https://martinfowler.com/articles/accelerate-foreword.html
https://www.martinfowler.com/articles/originalContinuousIntegration.html
https://www.martinfowler.com/articles/originalContinuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
http://doi.acm.org/10.1145/2593882.2593883
http://doi.acm.org/10.1145/2593882.2593883
https://www.toptal.com/software/trunk-based-development-git-flow
https://www.toptal.com/software/trunk-based-development-git-flow
http://www.drdobbs.com/architecture-and-design/what-exactly-is-devops/240009147#
http://www.drdobbs.com/architecture-and-design/what-exactly-is-devops/240009147#
http://doi.org/10.5334/jors.as
http://doi.acm.org/10.1145/1010865.1010868
http://doi.acm.org/10.1145/1010865.1010868
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://www.ibm.com/developerworks/java/tutorials/j-cq11207/j-cq11207-pdf.pdf
https://www.ibm.com/developerworks/java/tutorials/j-cq11207/j-cq11207-pdf.pdf
http://doi.acm.org/10.1145/2568225.2568260
http://doi.acm.org/10.1145/2568225.2568260
http://dl.acm.org/citation.cfm?id=2818754.2818800
http://dl.acm.org/citation.cfm?id=2818754.2818800
http://kean.github.io/post/trunk-based-development
http://kean.github.io/post/trunk-based-development
https://paulhammant.com/2013/04/05/what-is-trunk-based-development/
https://paulhammant.com/2013/04/05/what-is-trunk-based-development/
https://trunkbaseddevelopment.com/

Henney, K., 2018. “GOTO Chicago 2018: Old is the New New”.
https://www.youtube.com/watch?v=AbgsfeGvg3E, re-
trieved,2 November 2018.

Hilton, M., Nelson, N., Dig, D., Tunnell, T., Marinov, D., et al.,
2016a. “Continuous Integration (CI) Needs and Wishes for
Developers of Proprietary Code”. Tech. rep., Corvallis, OR:
Oregon State University, Dept. of Computer Science.
URL http://dspace-ir.library.oregonstate.edu/

xmlui/handle/1957/59856

Hilton, M., Tunnell, T., Huang, K., Marinov, D., Dig, D.,
2016b. “Usage, Costs, and Benefits of Continuous Integra-
tion in Open-Source Projects”. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software
Engineering. ACM, pp. 426–437.

Hodgson, P., 2010. “Feature Toggles (aka Feature Flags)”.
https://martinfowler.com/articles/feature-

toggles.html, retrieved, 21 October 2018.
Holck, J., Jørgensen, N., 2003. “Continuous Integration and

Quality Assurance: A Case Study of Two Open Source
Projects”. Australasian Journal of Information Systems
11 (1).

Humble, J., 2018. “ContinuousDelivery.com Webpage”. https:
//continuousdelivery.com/, retrieved, 2018.

Humble, J., Farley, D., 2010. Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Au-
tomation. Addison-Wesley, Upper Saddle River, NJ, US.

Husted, T., 2014. “Why Feature Branches are a Good Thing”.
https://www.nimbleuser.com/blog/why-feature-

branches-are-a-good-thing, retrieved, 06 October
2018.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German,
D. M., Damian, D., 2014. “The Promises and Perils of
Mining GitHub”. In: Proceedings of the 11th Working
Conference on Mining Software Repositories. MSR 2014.
ACM, New York, NY, USA, pp. 92–101.
URL http://doi.acm.org/10.1145/2597073.

2597074

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German,
D. M., Damian, D., Oct 2016. “An In-depth Study of the
Promises and Perils of Mining GitHub”. Empirical Software
Engineering 21 (5), 2035–2071.
URL https://doi.org/10.1007/s10664-015-9393-5

Karanth, D., 2017a. “Continuous Integration Part 1: The
Fundamentals”. http://techtowntraining.com/

resources/blog/continuous-integration-part-1-

fundamentals, retrieved, 10 August 2017.
Karanth, D., 2017b. “Continuous Integration Part 2: CI Server &

Toolkit”. http://techtowntraining.com/resources/

blog/continuous-integration-part-2-ci-server-

toolkit, retrieved, 10 August 2017.
Karanth, D., 2017c. “Continuous Integration Part 3:

Best Practices”. http://techtowntraining.com/

resources/blog/continuous-integration-part-3-

best-practices, retrieved, 10 August 2017.
Kim, S., Park, S., Yun, J., Lee, Y., 2008. “Automated Continu-

ous Integration of Component-Based Software: An Industrial

Experience”. In: Proceedings of the 2008 23rd IEEE/ACM In-
ternational Conference on Automated Software Engineering.
IEEE Computer Society, pp. 423–426.

Lacoste, F. J., Aug 2009. “Killing the Gatekeeper: Introducing a
Continuous Integration System”. In: 2009 Agile Conference.
pp. 387–392.

Lamourine, M., 2018. “Book Review of Accelerate: Building
and Scaling High Performing Technology Organizations”.
;login: The Usenix Magazine 43 (3), 60–61.
URL https://www.usenix.org/system/files/

login/articles/login_fall18_15_books.pdf

Larman, C., 2004. Agile and Iterative Development. Addison-
Wesley, Boston, MA, US.

Legay, D., Decan, A., Mens, T., 2018. “On the Impact of Pull
Request Decisions on Future Contributions”. arXiv preprint
arXiv:1812.06269.
URL https://arxiv.org/pdf/1812.06269.pdf

Limoncelli, T., 2014. “Yes, You Really Can Work From HEAD”.
http://everythingsysadmin.com/2014/03/yes-

you-really-can-work-from-head.html, retrieved, 06
October 2018.

Mahlberg, M., 2014. “There is No Such Thing as
a Continuous Integration Server”. http://agile-

aspects.michaelmahlberg.com/2014/12/there-

is-no-such-thing-as-continuos.html, retrieved, 8
January 2018.

Martensson, T., Hammarström, P., Bosch, J., Aug 2017. “Con-
tinuous Integration is Not About Build Systems”. In: 2017
43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). pp. 1–9.

McConnell, S., 1996a. “Daily Build and Smoke Test”. IEEE
Software July, 144.

McConnell, S., 1996b. Rapid Development. Microsoft Press,
Redmond, WA, US.

McConnell, S., 2004. Code Complete, 2nd Edition. Microsoft
Press, Redmond, WA, US.

McConnell, S., 2008. “Agile Software: Business Im-
pact and Business Benefits”. http://www.construx.

com/10x_Software_Development/Agile_Software_

_Business_Impact_and_Business_Benefits, retrieved,
6 November 2017.

Mergel, I., 2015. “Open Collaboration in the Public Sector: The
Case of Social Coding on GitHub”. Government Information
Quarterly 32 (4), 464 – 472.
URL http://www.sciencedirect.com/science/

article/pii/S0740624X15300095

Meyer, B., 2014a. Agile! The Good, Bad, and Ugly. Springer
International Publishing, Switzerland.

Meyer, M., 2014b. “Continuous Integration and Its Tools”. IEEE
Software 31 (3), p. 14.

Miller, A., Aug 2008. “A Hundred Days of Continuous Integra-
tion”. In: Agile 2008 Conference. pp. 289–293.

Mówiński, K., 2018. “Escape from Merge Hell: Why I
Prefer Trunk-Based Development Over Feature Branching
and GitFlow”. https://stxnext.com/blog/2018/

02/28/escape-merge-hell-why-i-prefer-trunk-

14

https://www.youtube.com/watch?v=AbgsfeGvg3E
http://dspace-ir.library.oregonstate.edu/xmlui/handle/1957/59856
http://dspace-ir.library.oregonstate.edu/xmlui/handle/1957/59856
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://continuousdelivery.com/
https://continuousdelivery.com/
https://www.nimbleuser.com/blog/why-feature-branches-are-a-good-thing
https://www.nimbleuser.com/blog/why-feature-branches-are-a-good-thing
http://doi.acm.org/10.1145/2597073.2597074
http://doi.acm.org/10.1145/2597073.2597074
https://doi.org/10.1007/s10664-015-9393-5
http://techtowntraining.com/resources/blog/continuous-integration-part-1-fundamentals
http://techtowntraining.com/resources/blog/continuous-integration-part-1-fundamentals
http://techtowntraining.com/resources/blog/continuous-integration-part-1-fundamentals
http://techtowntraining.com/resources/blog/continuous-integration-part-2-ci-server-toolkit
http://techtowntraining.com/resources/blog/continuous-integration-part-2-ci-server-toolkit
http://techtowntraining.com/resources/blog/continuous-integration-part-2-ci-server-toolkit
http://techtowntraining.com/resources/blog/continuous-integration-part-3-best-practices
http://techtowntraining.com/resources/blog/continuous-integration-part-3-best-practices
http://techtowntraining.com/resources/blog/continuous-integration-part-3-best-practices
https://www.usenix.org/system/files/login/articles/login_fall18_15_books.pdf
https://www.usenix.org/system/files/login/articles/login_fall18_15_books.pdf
https://arxiv.org/pdf/1812.06269.pdf
http://everythingsysadmin.com/2014/03/yes-you-really-can-work-from-head.html
http://everythingsysadmin.com/2014/03/yes-you-really-can-work-from-head.html
http://agile-aspects.michaelmahlberg.com/2014/12/there-is-no-such-thing-as-continuos.html
http://agile-aspects.michaelmahlberg.com/2014/12/there-is-no-such-thing-as-continuos.html
http://agile-aspects.michaelmahlberg.com/2014/12/there-is-no-such-thing-as-continuos.html
http://www.construx.com/10x_Software_Development/Agile_Software__Business_Impact_and_Business_Benefits
http://www.construx.com/10x_Software_Development/Agile_Software__Business_Impact_and_Business_Benefits
http://www.construx.com/10x_Software_Development/Agile_Software__Business_Impact_and_Business_Benefits
http://www.sciencedirect.com/science/article/pii/S0740624X15300095
http://www.sciencedirect.com/science/article/pii/S0740624X15300095
https://stxnext.com/blog/2018/02/28/escape-merge-hell-why-i-prefer-trunk-based-development-over-feature-branching-and-gitflow/
https://stxnext.com/blog/2018/02/28/escape-merge-hell-why-i-prefer-trunk-based-development-over-feature-branching-and-gitflow/

based-development-over-feature-branching-and-

gitflow/, retrieved, 6 October 2018.
Newman, S., 2017. “GOTO Chicago 2017: Feature Branches

and Toggles in a Post-GitHub World”. https://www.

youtube.com/watch?v=lqRQYEHAtpk, retrieved, 15 Octo-
ber 2018.

North, D., 2006. “Continuous Build is Not Continu-
ous Integration”. https://dannorth.net/2006/

03/22/continuous-build-is-not-continuous-

integration/, retrieved, 15 December 2018.
Ortu, M., Pinna, A., Tonelli, R., Marchesi, M., Bowes, D.,

Destefanis, G., 2018. “Angry-Builds: An Empirical Study Of
Affect Metrics and Builds Success on GitHub Ecosystem”.
In: XP ’18 Companion: XP ’18 Companion, May 21–25,
2018, Porto, Portugal. ACM, New York, NY, USA.
URL https://www.researchgate.net/publication/

328069671_Angry-Builds_An_Empirical_Study_Of_

Affect_Metrics_and_Builds_Success_on_GitHub_

Ecosystem

Phillips, S., Sillito, J., Walker, R., 2011. “Branching and
Merging: An Investigation into Current Version Control
Practices”. In: Proceedings of the 4th International Workshop
on Cooperative and Human Aspects of Software Engineering.
CHASE ’11. ACM, New York, NY, USA, pp. 9–15.
URL http://doi.acm.org/10.1145/1984642.

1984645

Pignatelli, N., 2018. “How to Get Continuous Integration
Right. The Secret to Deliver at Full Throttle is Not About
Your Tools”. https://hackernoon.com/how-to-get-

continuous-integration-right-77bda4bc0d1f,
retrieved, 28 August 2018.

Pilone, D., Miles, R., 2008. Head First Software Development.
O’Reilly Media Inc., Sebastopol, CA, US.

Pinto, G., Castor, F., Bonifacio, R., Rebouças, M., 2018.
“Work Practices and Challenges in Continuous Integration:
A Survey with Travis CI Users”. Software: Practice and
Experience 48 (12), 2223–2236.
URL https://onlinelibrary.wiley.com/doi/abs/

10.1002/spe.2637

Pittet, S., 2018. “How To Get Started with Continuous Inte-
gration”. https://www.atlassian.com/continuous-

delivery/how-to-get-to-continuous-integration,
retrieved 28 August 2018.

Poppendieck, M., Poppendieck, T., 2010. Leading Lean Soft-
ware Development: Results Are Not the Point. Addison-
Wesley, Boston, MA, US.

Potvin, R., Levenberg, J., July 2016. “Why Google Stores Bil-
lions of Lines of Code in a Single Repository”. Communica-
tions of the ACM 59 (7), 78–87.

Prentice, A., 2009. “Testing: You Don’t Have to be Agile to be
Agile”. https://www.atlassian.com/blog/archives/
testing_you_dont_have_to_be_agile_to_be_agile,
retrieved, 8 August 2018.

Prince, S., 2017. “It’s Not CI, it’s Just CI Theatre”.
https://www.gocd.org/2017/05/16/its-not-CI-

its-CI-theatre.html, retrieved 11 January 2018.

Radigan, D., 2018. “Continuous Integration, Ex-
plained”. https://www.atlassian.com/continuous-

delivery/continuous-integration-intro, retrieved,
28 August 2018.

Rahman, A., Agrawal, A., Krishna, R., Sobran, 2018. “Charac-
terizing The Influence of Continuous Integration”. ACM.
URL https://akondrahman.github.io/papers/

swan2018_ci.pdf

Rahman, A., Agrawal, A., Krishna, R., Sobran, A., Menzies, T.,
2017. “Continuous Integration: The Silver Bullet?”. arXiv
preprint arXiv:1711.03933.

Rahman, M. T., Querel, L.-P., Rigby, P. C., Adams, B., 2016.
“Feature Toggles: Practitioner Practices and a Case Study”.
In: Proceedings of the 13th International Conference on
Mining Software Repositories. MSR ’16. ACM, New York,
NY, USA, pp. 201–211.
URL http://doi.acm.org/10.1145/2901739.

2901745

Rebouças, M., Santos, R. O., Pinto, G., Castor, F., 2017. “How
Does Contributors’ Involvement Influence the Build Status
of an Open-source Software Project?”. In: Proceedings of the
14th International Conference on Mining Software Reposito-
ries. MSR ’17. IEEE Press, Piscataway, NJ, USA, pp. 475–
478.
URL https://doi.org/10.1109/MSR.2017.32

Rogers, R. O., 2004. “Scaling Continuous Integration”. In: In-
ternational Conference on Extreme Programming and Agile
Processes in Software Engineering. Springer, pp. 68–76.

Ropa, S., 2018. “A Craftsman Looks at Continuous Integration”.
https://about.gitlab.com/2018/01/17/craftsman-

looks-at-continuous-integration, retrieved, 28
August 2018.

Rossi, C., Shibley, E., Su, S., Beck, K., Savor, T., Stumm,
M., 2016. “Continuous Deployment of Mobile Software at
Facebook (Showcase)”. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations
of Software Engineering. FSE 2016. ACM, New York, NY,
USA, pp. 12–23.
URL http://doi.acm.org/10.1145/2950290.

2994157

Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K.,
Stumm, M., May 2016. “Continuous Deployment at Face-
book and OANDA”. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C).
pp. 21–30.

Setter, M., 2017a. “Reduce Production Bugs with Continuous
Integration”. https://blog.codeship.com/reduce-

production-bugs-with-continuous-integration,
retrieved 28 September 2018.

Setter, M., 2017b. “Why Continuous Integration Is Im-
portant”. https://blog.codeship.com/continuous-

integration-important, retrieved 24 October 2017.
Shahin, M., Babar, M. A., Zhu, L., 2017. “Continuous Integra-

tion, Delivery and Deployment: A Systematic Review on
Approaches, Tools, Challenges and Practices ”. IEEE Access
5, 3909–3943.

15

https://stxnext.com/blog/2018/02/28/escape-merge-hell-why-i-prefer-trunk-based-development-over-feature-branching-and-gitflow/
https://stxnext.com/blog/2018/02/28/escape-merge-hell-why-i-prefer-trunk-based-development-over-feature-branching-and-gitflow/
https://www.youtube.com/watch?v=lqRQYEHAtpk
https://www.youtube.com/watch?v=lqRQYEHAtpk
https://dannorth.net/2006/03/22/continuous-build-is-not-continuous-integration/
https://dannorth.net/2006/03/22/continuous-build-is-not-continuous-integration/
https://dannorth.net/2006/03/22/continuous-build-is-not-continuous-integration/
https://www.researchgate.net/publication/328069671_Angry-Builds_An_Empirical_Study_Of_Affect_Metrics_and_Builds_Success_on_GitHub_Ecosystem
https://www.researchgate.net/publication/328069671_Angry-Builds_An_Empirical_Study_Of_Affect_Metrics_and_Builds_Success_on_GitHub_Ecosystem
https://www.researchgate.net/publication/328069671_Angry-Builds_An_Empirical_Study_Of_Affect_Metrics_and_Builds_Success_on_GitHub_Ecosystem
https://www.researchgate.net/publication/328069671_Angry-Builds_An_Empirical_Study_Of_Affect_Metrics_and_Builds_Success_on_GitHub_Ecosystem
http://doi.acm.org/10.1145/1984642.1984645
http://doi.acm.org/10.1145/1984642.1984645
https://hackernoon.com/how-to-get-continuous-integration-right-77bda4bc0d1f
https://hackernoon.com/how-to-get-continuous-integration-right-77bda4bc0d1f
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2637
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2637
https://www.atlassian.com/continuous-delivery/how-to-get-to-continuous-integration
https://www.atlassian.com/continuous-delivery/how-to-get-to-continuous-integration
https://www.atlassian.com/blog/archives/testing_you_dont_have_to_be_agile_to_be_agile
https://www.atlassian.com/blog/archives/testing_you_dont_have_to_be_agile_to_be_agile
https://www.gocd.org/2017/05/16/its-not-CI-its-CI-theatre.html
https://www.gocd.org/2017/05/16/its-not-CI-its-CI-theatre.html
https://www.atlassian.com/continuous-delivery/continuous-integration-intro
https://www.atlassian.com/continuous-delivery/continuous-integration-intro
https://akondrahman.github.io/papers/swan2018_ci.pdf
https://akondrahman.github.io/papers/swan2018_ci.pdf
http://doi.acm.org/10.1145/2901739.2901745
http://doi.acm.org/10.1145/2901739.2901745
https://doi.org/10.1109/MSR.2017.32
https://about.gitlab.com/2018/01/17/craftsman-looks-at-continuous-integration
https://about.gitlab.com/2018/01/17/craftsman-looks-at-continuous-integration
http://doi.acm.org/10.1145/2950290.2994157
http://doi.acm.org/10.1145/2950290.2994157
https://blog.codeship.com/reduce-production-bugs-with-continuous-integration
https://blog.codeship.com/reduce-production-bugs-with-continuous-integration
https://blog.codeship.com/continuous-integration-important
https://blog.codeship.com/continuous-integration-important

Shore, J., 2005a. “Continuous Integration is an Atti-
tude, Not a Tool”. http://www.jamesshore.com/Blog/
Continuous-Integration-is-an-Attitude.html, re-
trieved, 6 November 2017.

Shore, J., 2005b. “Why I Don’t Like Cruise Con-
trol”. http://www.jamesshore.com/Blog/

WhyIDontLikeCruiseControl.html, retrieved, 01
December 2017.

Shore, J., 2006. “Continuous Integraton on a Dollar a Day”.
http://www.jamesshore.com/Blog/Continuous-

Integration-on-a-Dollar-a-Day.html, retrieved, 6
November 2017.

Shore, J., 2008. “Forces Affecting Continuous Integra-
tion”. http://www.jamesshore.com/Blog/Forces-

Affecting-Continuous-Integration.html, retrieved,
6 November 2017.

Shore, J., 2012. “Continuous Integration with Git”.
https://www.letscodejavascript.com/v3/

transcripts/lessons_learned/1, retrieved, 6 Novem-
ber 2017.

Shore, J., Warden, S., 2008. The Art of Agile Development.
O’Reilly Media, Inc., Sebastopol, US.

Slaughter, A. E., Peterson, J. W., Gaston, D. R., Permann,
C. J., Andrs, D., Miller, J. M., 2015. “Continuous Integration
for Concurrent MOOSE Framework and Application Devel-
opment on GitHub”. Journal of Open Research Software
3 (INL/JOU-15-34179).

Sletholt, M. T., Hannay, J., Pfahl, D., Benestad, H. C., Langtan-
gen, H. P., 2011. “A Literature Review of Agile Practices and
Their Effects in Scientific Software Development”. In: Pro-
ceedings of the 4th International Workshop on Software Engi-
neering for Computational Science and Engineering. SECSE
’11. ACM, New York, NY, USA, pp. 1–9.

Staron, M., Meding, W., Soder, O., Back, M., 2018. “Measure-
ment and Impact Factors of Speed of Reviews and Integration
in Continuous Software Engineering”. Foundations of Com-
puting and Decision Sciences 43 (4), 281–303.

StrideNews, 2017. “The Rabbit Hole: 30. Truck Based
Development vs Gitflow”. https://www.stridenyc.

com/podcasts/30-trunk-based-development-vs-

gitflow, retrieved 30 December 2018.
Ståhl, D., Bosch, J., 2014. “Modeling Continuous Integration

Practice Differences in Industry Software Development”. The
Journal of Systems and Software 87 (1), 48–59.

Ståhl, D., Mårtensson, T., Bosch, J., 2017. “The Continuity
of Continuous Integration: Correlations and Consequences”.
Journal of Systems and Software 127, 150–167.

Tørresdal, J. A., 2016a. “Continuous Integration (CI) – Is
That What We’re Doing?”. https://mrdevops.io/

continuous-integration-ci-is-that-what-were-

doing-e3137dfd39fd, retrieved, 08 August 2018.
Tørresdal, J. A., 2016b. “Trunk-Based Development”.

https://mrdevops.io/trunk-based-development-

8376fe577c11, retrieved, 08 August 2018.
Tørresdal, J. A., 2017. “If You Still Insist on Feature

Branching, You are Hurting Your Business and Our

Profession”. https://mrdevops.io/if-you-still-

insist-on-feature-branching-you-are-hurting-

your-business-and-our-profession-32e1109d4594,
retrieved, 08 August 2018.

Trahan, T. J., Adams, T. R., Burke, T. P., Dixon, D. A.,
McCartney, A. P., Nolen, S. D., Sweezy, J. E., Werner,
C., 2018. “Monte Carlo Application ToolKit (MCATK),
MonteRay and Talon GPU Tally Libraries”. Tech. Rep.
LA-UR-18-27957, Los Alamos National Labortary, Los
Alamos, NM, USA, 20th Topical Meeting of the Radiation
Protection & Shielding Division of ANS ; 2018-08-26 -
2018-08-31 ; Santa Fe, New Mexico, United States.
URL https://permalink.lanl.gov/object/tr?

what=info:lanl-repo/lareport/LA-UR-18-27957

Van Der Storm, T., 2008. “Backtracking Incremental Continuous
Integration”. In: Software Maintenance and Reengineering,
2008. CSMR 2008. 12th European Conference on. IEEE, pp.
233–242.

Vasilescu, B., van Schuylenburg, S., Wulms, J., Serebrenik, A.,
van den Brand, M. G. J., Sept 2014. “Continuous Integration
in a Social-Coding World: Empirical Evidence from GitHub”.
In: 2014 IEEE International Conference on Software Mainte-
nance and Evolution. pp. 401–405.

Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., Filkov, V., 2015.
“Quality and Productivity Outcomes Relating to Continuous
Integration in GitHub”. In: Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ESEC/FSE
2015. ACM, New York, NY, USA, pp. 805–816.

Warden, S., 2003. Extreme Programming Pocket Guide.
O’Reilly Media, Incorporated.

Wikipedia, 2017. “Continuous Integration”. https://en.

wikipedia.org/wiki/Continuous_integration,
retrieved 15 December 2017.

Wikipedia, 2018. “Anti-pattern”. https://en.wikipedia.

org/wiki/Anti-pattern, retrieved 26 December 2018.
Yu, Y., Wang, H., Filkov, V., Devanbu, P., Vasilescu, B., May

2015. “Wait for It: Determinants of Pull Request Evaluation
Latency on GitHub”. In: 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories. IEEE, pp. 367–
371.

Zhao, Y., Serebrenik, A., Zhou, Y., Filkov, V., Vasilescu,
B., 2017. “The Impact of Continuous Integration on Other
Software Development Practices: A Large-scale Empirical
Study”. In: Proceedings of the 32Nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering. ASE
2017. IEEE Press, Piscataway, NJ, USA, pp. 60–71.
URL http://dl.acm.org/citation.cfm?id=3155562.

3155575

Zilberfeld, G., 2017. “You’re Doing It All Wrong: Con-
tinuous Integration”. http://www.gilzilberfeld.

com/2017/05/youre-doing-it-wrong-continuous-

integration.html, retrieved, 06 November 2017.

16

http://www.jamesshore.com/Blog/Continuous-Integration-is-an-Attitude.html
http://www.jamesshore.com/Blog/Continuous-Integration-is-an-Attitude.html
http://www.jamesshore.com/Blog/Why I Dont Like CruiseControl.html
http://www.jamesshore.com/Blog/Why I Dont Like CruiseControl.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Forces-Affecting-Continuous-Integration.html
http://www.jamesshore.com/Blog/Forces-Affecting-Continuous-Integration.html
https://www.letscodejavascript.com/v3/transcripts/lessons_learned/1
https://www.letscodejavascript.com/v3/transcripts/lessons_learned/1
https://www.stridenyc.com/podcasts/30-trunk-based-development-vs-gitflow
https://www.stridenyc.com/podcasts/30-trunk-based-development-vs-gitflow
https://www.stridenyc.com/podcasts/30-trunk-based-development-vs-gitflow
https://mrdevops.io/continuous-integration-ci-is-that-what-were- doing-e3137dfd39fd
https://mrdevops.io/continuous-integration-ci-is-that-what-were- doing-e3137dfd39fd
https://mrdevops.io/continuous-integration-ci-is-that-what-were- doing-e3137dfd39fd
https://mrdevops.io/trunk-based-development-8376fe577c11
https://mrdevops.io/trunk-based-development-8376fe577c11
https://mrdevops.io/if-you-still-insist-on-feature-branching-you-are-hurting-your-business-and-our-profession-32e1109d4594
https://mrdevops.io/if-you-still-insist-on-feature-branching-you-are-hurting-your-business-and-our-profession-32e1109d4594
https://mrdevops.io/if-you-still-insist-on-feature-branching-you-are-hurting-your-business-and-our-profession-32e1109d4594
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-18-27957
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-18-27957
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Anti-pattern
https://en.wikipedia.org/wiki/Anti-pattern
http://dl.acm.org/citation.cfm?id=3155562.3155575
http://dl.acm.org/citation.cfm?id=3155562.3155575
http://www.gilzilberfeld.com/2017/05/youre-doing-it-wrong-continuous-integration.html
http://www.gilzilberfeld.com/2017/05/youre-doing-it-wrong-continuous-integration.html
http://www.gilzilberfeld.com/2017/05/youre-doing-it-wrong-continuous-integration.html

About The Author
Terry Adams has close to 35 years of experience in computational physics that covers performing computational
simulations, supporting user applications, developing new scientific algorithms, and doing scientific software
development. His first computational physics simulation was modelling the calibration of a small proton
accelerator using Lotus 123. This lead to computational quantum chemistry simulations that modelled muon
spin research for solid-state physics experiments at LAMPF/LANL. Terry worked on the commercial quantum
chemistry software package for Q-Chem, Inc. for nearly four years. There he learned a good bit of what not to
do in software development and found the need for, what he now knows as, software engineering practices
and tools. Starting in 1998, he worked for Silicon Graphics, Inc. and then LANL where he gained parallel
high-performance computing (HPC) experience working with, and on, several ASCI projects. Terry started
practicing continuous integration (CI) in 2008 at the start of the Monte Carlo Application ToolKit (MCATK)
effort.

17

	Introduction
	Integration
	Integration Approaches: Phased and Incremental
	The ``Daily Build''

	Continuous Integration
	Continuous Integration Practices
	Continuous Integration Anti-Patterns

	Continuous Integration: Daily Integration!?
	Continuous Integration: Trunk-Based Development
	Continuous Integration Users
	Summary
	Acknowledgements
	MCATK Continuous Integration

